Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 930: 172837, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38688360

ABSTRACT

Microplastics could be ingested by many organisms, including zooplankton, involving bioaccumulation and biomagnification mechanisms a cross food webs. The information about microplastic ingestion by zooplankton keeps increasing worldwide. However, it is still limited for particle sizes under 300 µm (small microplastics, SMPs) and in areas such as Southeast Asia, which is considered one of the hotspots for plastic debris. This study aimed to characterize the size, shape, and polymer types of the SMPs ingested by the copepod Centropages furcatus in Si Chang Island (upper Gulf of Thailand). The study spans offshore and coastal waters, with data collected across wet, intermediate, and dry seasons. Using a semi-automated technique for micro-FTIR (Fourier-transform infrared) scanning spectroscopy for particle analysis, we found ingested SMPs in all samples. A total of 750 individuals of the calanoid Centropages furcatus were analyzed, finding 309 plastic particles and an average ingestion value of 0.41 ± 0.13 particles ind-1, one of the highest recorded values. All the particles were fragments, with a predominant size under 50 µm, and polymer types as Polypropylene (PP, 71 %), followed by Ethylene-Propylene-Diene-Monomer (EPDM, 16 %) and Polyethylene (PE, 7 %). Up to 470.2 particles m-3 were estimated to be retained by this calanoid species and potentially available for trophic transfer. The effect of rainfall on SMPs ingestion was inconclusive, with a non-significant observed tendency to higher ingestion values near the coastal area than offshore area, suggesting a decrease in particle exposure due to the runoff effect. Nevertheless, future studies should increase the frequency of surveys to arrive at better conclusions.


Subject(s)
Copepoda , Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Thailand , Animals , Microplastics/analysis , Water Pollutants, Chemical/analysis , Food Chain , Particle Size , Eating , Plastics/analysis , Zooplankton
2.
Sci Total Environ ; 925: 171421, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38442765

ABSTRACT

Polystyrene foam is widely used due to its lightweight, impact resistance, and excellent thermal insulation properties. Meanwhile, weak adhesion between beads in polystyrene foam leads to fragmentation, generating a substantial amount of microplastics (<5 mm). Such polystyrene foam debris littered on beaches diminishes the aesthetic value of coastal areas, negatively impacting tourism. Due to its density lower than other plastics, polystyrene foam macroplastics float on the sea surface and, thus, they are significantly influenced by wind drag during oceanic transport. In contrast, polystyrene foam microplastics drifting beneath the sea surface are carried mostly by ocean currents. These properties of polystyrene foam macroplastics and microplastics hinder the elucidation of their transport, distribution, and fate in nature, despite their potential to adversely impact marine ecosystems. To elucidate the generation, transport, and fragmentation processes of polystyrene foam ocean plastics, we conducted concurrent visual observations and surface net towing from seven training vessels around Japan during 2014-2020. Overall, the abundances of polystyrene foam ocean plastics were higher in the Sea of Japan than in the North Pacific south of Japan. The average abundances of polystyrene foam microplastics and macroplastics were 0.33 pieces/m3 and 0.45 pieces/km, respectively, over the entire sea area around Japan. In the Sea of Japan, the peak abundances of polystyrene foam macroplastics occurred in upstream of the Tsushima Current, while the peak for microplastics occurred downstream, suggesting that continuous fragmentation occurred during transport between the two peaks. Backward-in-time particle tracking model experiments suggested that the sources of polystyrene foam macroplastics observed in the Sea of Japan included aquaculture buoys and styrene debris beached around the Tsushima Strait. The present study demonstrated that reducing the release of polystyrene foam aquaculture floats will likely diminish the abundance of ocean plastics in the Sea of Japan.

3.
Sci Total Environ ; 920: 170787, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38354800

ABSTRACT

Southeast Asian countries are recognized as significant contributors to the discharge of abundant plastic waste into the ocean. In this study, we conducted neuston net surveys on Si Chang Island of the Gulf of Thailand, a coral reef conservation area, to determine the presence of microplastic (MP) pollution. The survey, conducted during the wet (southwesterly monsoon), transition, and dry seasons (northeasterly monsoon), revealed that the MP abundance was in the range of 0.02-42.46 particles m-3. The precipitation, wind, and current direction induced by monsoons influenced the abundance and distribution of MP, presenting a significant seasonality. The cluster analysis for colors and polymer types of MPs suggested that the origin of plastic particles is diverse. Based on our results, a proposal for the generation, sources, and pathways for MPs in the Gulf of Thailand is presented: 1) plastic wastes exposed to strong UV light during the dry season get fragmented around the river, and 2) heavy rains wash away the particles during the wet season. This proposal is applicable to tropical regions, including the Gulf of Thailand. Therefore, this paper concluded that ocean currents induced by monsoons and the unique climate, resulting in the generation of MPs on land, increase MP presence and distribution in the ocean surrounding Southeast Asia countries. Furthermore, coral reef ecosystems can be particularly threatened by MPs in these areas. So, an increase in MP monitoring on coral ecosystems from Thailand and the world is highly recommended.

4.
Mar Pollut Bull ; 199: 115985, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184858

ABSTRACT

Although the Indian Ocean receives a large amount of land-based plastic waste, the studies on pathways of riverine plastic debris are limited to date. Therefore, a particle tracking model that included ocean surface currents, horizontal diffusion, Stokes drift, windage, and beaching/re-drifting processes was developed to reproduce the behavior of riverine plastic debris in the Indian Ocean. The modeled particles were released in the model domain based on riverine plastic debris database. The maximum abundance of beached particles occurred during the southwesterly monsoon season, particularly in the Bay of Bengal. The particles released from the rivers were trapped in the northern Indian Ocean unless both Stokes drift and windage were excluded from transportation velocity. These results suggest that the riverine plastic debris was trapped in the northern Indian Ocean until it fragmented into less buoyant small microplastics drifting in the subsurface layer, free from windage and Stokes drift at increasing depths.


Subject(s)
Plastics , Waste Products , Indian Ocean , Waste Products/analysis , Environmental Monitoring/methods , Microplastics
5.
Sci Total Environ ; 905: 167329, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37748610

ABSTRACT

In recent years, significant efforts have been dedicated to measuring and comprehending the impact of microplastics (MPs) in the ocean. Despite harmonization guidelines for MPs research, discrepancies persist in the applied methodologies and future challenges, mostly for the smaller fractions (< 100 µm). Whether intentional or accidental, ingesting plastic particles by zooplankton can lead to incorporating this pollutant into aquatic food chains. Therefore, zooplankton can serve as a suitable proxy tool for assessing the presence of plastic particles in ocean waters. However, reliable information is essential for conducting experimental laboratory studies on the impact of MPs ingestion by zooplankton organisms. Using zooplankton as a research tool for MPs offers numerous advantages, including similar sampling methodologies and study techniques as MPs and particle data integration over space and time. The scientific community can gain novel perspectives by merging zooplankton studies with MPs research. This review explores key aspects of using zooplankton as a tool for MPs research in water samples, encompassing various views such as particles ingestion in natural environments, particle quantification in zooplankton samples (past and future), ecotoxicological and toxicology model studies. By leveraging the potential of zooplankton research, advancements can be made in developing innovative techniques for MPs analysis.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Microplastics/analysis , Zooplankton , Plastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
6.
Mar Pollut Bull ; 195: 115521, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37714078

ABSTRACT

Multirotor drones can be efficiently used to monitor macro-litter in coastal and riverine environments. Litter on beaches, dunes and riverbanks, along with floating litter on coastal and river waters, can be spotted and mapped from aerial drone images. Items detection and classification are prone to image resolution, which is expressed in terms of Ground Sampling Distance (GSD). The GSD is determined by drone flight altitude and camera properties. This paper investigates what is a suitable GSD value for litter survey. Drone flight altitude and camera setup should be chosen to obtain a GSD between 0.5 cm/px and 1.25 cm/px. Within this range, the lowest GSD allows litter categorization and classification, whereas the highest value should be adopted for a coarser litter census. In the vision of drawing up a global protocol for drone-based litter surveys, this work sets the ground for homogenizing data collection and litter assessments.

7.
Sci Total Environ ; 889: 163983, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37201813

ABSTRACT

Marine debris comprising single-use plastic products (SUPs) is ubiquitous in Asian coastal waters, but there is little information on the types of polymers and the concentrations of plastic additives such waste products contain. In this study, 413 SUPs randomly collected from 4 Asian countries between 2020 and 2021 were analyzed to obtain specific polymer and organic additive profiles. Polyethylene (PE), coupled with external polymers, was prominent in the inside of the SUPs, whereas polypropylene (PP) and polyethylene terephthalate (PET) were prevalent in both the insides and outsides of the SUPs. The use of different polymers in the insides and outsides of PE SUPs implies specific and complicated recycling systems are required to maintain the purity of the products. Phthalate plasticizers including dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DiBP), dibutyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), and the antioxidant butylated hydroxytoluene (BHT) were prevalent in the SUPs (n = 68). High concentrations of DEHP were detected in PE bags from Myanmar (820,000 ng/g) and Indonesia (420,000 ng/g), which were an order of magnitude greater than the concentrations in PE bags collected in Japan. SUPs containing high concentrations of organic additives may be the primary source of harmful chemicals in the environment, and should be responsible for their ubiquitous distribution in ecosystems.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Polymers , Japan , Indonesia , Myanmar , Thailand , Ecosystem , Plastics , Dibutyl Phthalate , Polyethylene
8.
Mar Pollut Bull ; 192: 114951, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37172339

ABSTRACT

The knowledge of microplastic (MP) age could aid the deduction of the origin and fate of a fragment carried by ocean currents over long time periods and distances. The present study developed a novel method to estimate the age of MPs (i.e., UV radiation exposure time) using the oxidation level of polyethylene (i.e., carbonyl index) from infrared spectrometry, ultraviolet erythemal radiation (UVER) data, and ambient seawater temperatures. Accelerated and outdoor exposure experiments were conducted to establish relationships among the temporally integrated UVER, ambient temperature, and carbonyl index. Thereafter, the age of MPs was computed, with Miyakojima Island serving as the reference location. The estimated ages of MPs collected from the western North Pacific Ocean ranged from 1 to 3 years, and those MPs from nearshore waters ranged from 0 to 5 years.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics/analysis , Pacific Ocean , Polyethylene/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Oceans and Seas
9.
Mar Pollut Bull ; 190: 114818, 2023 May.
Article in English | MEDLINE | ID: mdl-36989597

ABSTRACT

The carbonyl index (CI) of polyethylene and polypropylene microplastics (MPs) (2950 particles) collected in coastal waters around Japan was investigated. The CI of MPs was calculated by the specified area under band technique. The mean MP CI in all samples (regardless of shape and color) was 0.69 ± 0.34 and 0.70 ± 0.34 for polyethylene and polypropylene, respectively, and there was no significant difference in the color or shape of the MPs. The polyethylene, white, and fragment MPs CI was negatively (p < 0.05) correlated with the major length of the MPs. Large MPs with relatively little deterioration were distributed along the west coast of the Sea of Japan, whereas small MPs were distributed along the east coast. Our findings of this gradual change in the deterioration of MPs, based on geographical distribution, are in accordance with literature CI-size and MP degradation hypotheses.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Polypropylenes , Japan , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Polyethylene/analysis
10.
Sci Total Environ ; 825: 153935, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35192833

ABSTRACT

The fate of mismanaged plastic waste released into oceans (ocean plastics) remains a topic of debate, where the mass imbalance between the leakage and abundance in the world's oceans appears paradoxical. In the present study, a budget for ocean plastic mass was estimated based on a combination of numerical particle tracking and linear mass-balance models, both validated using a worldwide ocean plastic dataset. Integrating the time series of worldwide macroplastic emission from both rivers and the fisheries industry over the period 1961-2017 yielded a total mass of 25.3 million metric tonnes (MMT). Macro- and microplastics currently floating in the oceans, and microplastics on beaches, each account for 3-4% of the ocean plastics emitted worldwide to date. Overall, 23.4% of ocean plastics were macroplastics on beaches. Meanwhile, 66.7% of ocean plastics were heavier than seawater or microplastics removed from the upper ocean and beaches, which are difficult to monitor under current observation frameworks adopted worldwide. However, the present study on ocean plastics suggested that the whole ocean plastics accounted for only 4.7% of mismanaged plastic waste (542.2 MMT) generated between the 1960s and today.


Subject(s)
Plastics , Water Pollutants, Chemical , Environmental Monitoring , Microplastics , Oceans and Seas , Waste Products/analysis , Water Pollutants, Chemical/analysis
11.
Mar Pollut Bull ; 173(Pt A): 113027, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34627037

ABSTRACT

Digestion protocols are needed to determine microplastics abundance and features. This study assessed the organic matter (OM) digestion efficiency on plankton samples and the MPs' weight, size, and polymer changes under different digestion techniques. For this, 2-step (KOH and H2O2 + Fe2+) and 3-step (2-step and enzymes) digestion techniques were assessed under different duration and temperature conditions. The results obtained for OM digestion with 2-step and 3-step techniques were satisfactory. Weight changes were registered for polyethylene terephthalate (PET), polystyrene foam, polyvinyl chloride, and polycarbonate with 2-step digestion, but with inconsistent values. Significant size changes were registered only for PET applying 2-step digestion techniques at 60 °C. Using 40 °C for 72 h prevailed all polymers from size changes. Polyethylene weathered MPs were also preserved, including an enzymatic step. Polymer fingerprints were not affected by any digestion technique. Based on these results, any method applying high temperatures will damage MPs.


Subject(s)
Microplastics , Water Pollutants, Chemical , Digestion , Environmental Monitoring , Hydrogen Peroxide , Plankton , Plastics , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
12.
Mar Pollut Bull ; 165: 112111, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33588104

ABSTRACT

Two neuston nets, mesh opening 1.00 mm and 0.333 mm, were towed in parallel. The 0.333 mm net collected more microplastics of longest length ≤2.00 mm than the 1.00 mm net. Mesh selection curve of the 1.00 mm mesh net for microplastics was estimated with the SELECT analysis by comparison of size distributions of microplastics collected by the two nets. Selection curve of the 0.333 mm mesh net, often used as a standard mesh size for microplastic net sampling, was also estimated on the assumption of geometrical similarity between microplastic size and mesh opening for a given retention probability. Approximately 60% amount of microplastics (0.4-1.0 mm) in net sampling with the 0.333 mm net passed through the mesh and was thus unaccounted for. The 0.333 mm net can retain at most 1.5% of microplastics ≤0.4 mm entering the net, and rarely retained microplastics ≤0.3 mm.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Plastics , Water Pollutants, Chemical/analysis
13.
Mar Pollut Bull ; 146: 831-837, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31426225

ABSTRACT

An interlaboratory comparison exercise was conducted to assess the consistency of microplastic quantification across several laboratories. The test samples were prepared by mixing one liter seawater free of plastics, microplastics made from polypropylene, high- and low-density polyethylene, and artificial particles in two plastic bottles, and analyzed concurrently in 12 experienced laboratories around the world. The minimum requirements to quantify microplastics were examined by comparing actual numbers of microplastics in these sample bottles with numbers measured in each laboratory. The uncertainty was due to pervasive errors derived from inaccuracies in measuring sizes and/or misidentification of microplastics, including both false recognition and overlooking. The size distribution of microplastics should be smoothed using a running mean with a length of >0.5 mm to reduce uncertainty to less than ±20%. The number of microplastics <1 mm was underestimated by 20% even when using the best practice for measuring microplastics in laboratories.


Subject(s)
Laboratories/standards , Plastics/analysis , Environmental Monitoring , Polyethylene/analysis , Polypropylenes/analysis , Seawater/analysis
14.
Nat Commun ; 10(1): 417, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679437

ABSTRACT

Laboratory-based studies have suggested that marine organisms can be harmed by ingesting microplastics. However, unless the current and future microplastic abundance in the ocean environment is quantified, these experimental studies could be criticized for using an unrealistic density or sparsity of microplastics. Here we show the secular variations of pelagic microplastic abundance in the Pacific Ocean from 1957 to 2066, based on a combination of numerical modeling and transoceanic surveys conducted meridionally from Antarctica to Japan. Marine plastic pollution is an ongoing concern especially in the North Pacific, and pelagic microplastics are regarded as non-conservative matter due to the removal processes that operate in the upper ocean. The results of our numerical model incorporating removal processes on a 3-year timescale suggested that the weight concentrations of pelagic microplastics around the subtropical convergence zone would increase approximately twofold (fourfold) by 2030 (2060) from the present condition.

15.
Environ Sci Technol ; 52(21): 12188-12197, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30295469

ABSTRACT

This is the first survey to investigate the vertical distribution and composition of microplastics >20 µm at the surface (0-0.2 m; bulk sample) and in the water column (3-58 m depth; pump) of six semi-enclosed bays and two nearshore areas of South Korea. The average microplastic abundance of 41 stations at all sampling depths was 871 particles/m3, and the microplastic abundance near urban areas (1051 particles/m3) was significantly higher than that near rural areas (560 particles/m3). Although the average microplastic abundances in the midcolumn (423 particles/m3) and bottom water (394 particles/m3) were approximately 4 times lower than that of surface water (1736 particles/m3), microplastics prevailed throughout the water column in concentrations of 10-2000 particles/m3. The average sizes of fragment and fiber type microplastics were 197 and 752 µm, respectively. Although the polymer composition differed by depth depending on the particle size and density, polypropylene and polyethylene predominated throughout the water column regardless of their low density and particle size. Finally, the middle and bottom water samples contained higher abundances of microplastics than predicted by a model based on physical mixing, indicating that biological interactions also influence the downward movement of low-density microplastics.


Subject(s)
Plastics , Water Pollutants, Chemical , Bays , Environmental Monitoring , Republic of Korea
16.
Mar Pollut Bull ; 132: 33-43, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29773443

ABSTRACT

The amount of marine debris washed ashore on a beach in Newport, Oregon, USA was observed automatically and sequentially using a webcam system. To investigate potential causes of the temporal variability of marine debris abundance, its time series was compared with those of satellite-derived wind speeds and sea surface height off the Oregon coast. Shoreward flow induced by downwelling-favorable southerly winds increases marine debris washed ashore on the beach in winter. We also found that local sea-level rise caused by westerly winds, especially at spring tide, moved the high-tide line toward the land, so that marine debris littered on the beach was likely to re-drift into the ocean. Seasonal and sub-monthly fluctuations of debris abundance were well reproduced using a simple numerical model driven by satellite-derived wind data, with significant correlation at 95% confidence level.


Subject(s)
Environmental Monitoring/methods , Water Pollution/analysis , Oregon , Pacific Ocean , Seasons , Video Recording , Wind
17.
Mar Pollut Bull ; 132: 44-51, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28916350

ABSTRACT

The abundance of marine macro-debris was quantified with high spatial resolution by applying an image processing technique to archived shoreline aerial photographs taken over Vancouver Island, Canada. The photographs taken from an airplane at oblique angles were processed by projective transformation for georeferencing, where five reference points were defined by comparing aerial photographs with satellite images of Google Earth. Thereafter, pixels of marine debris were extracted based on their color differences from the background beaches. The debris abundance can be evaluated by the ratio of an area covered by marine debris to that of the beach (percent cover). The horizontal distribution of percent cover of marine debris was successfully computed from 167 aerial photographs and was significantly related to offshore Ekman flows and winds (leeway drift and Stokes drift). Therefore, the estimated percent cover is useful information to determine priority sites for mitigating adverse impacts across broad areas.


Subject(s)
Environmental Monitoring/methods , Water Pollution/analysis , Bathing Beaches , British Columbia , Islands , Pacific Ocean , Photography , Water Movements , Wind
18.
Mar Pollut Bull ; 121(1-2): 85-96, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28559056

ABSTRACT

A numerical model was established to reproduce the oceanic transport processes of microplastics and mesoplastics in the Sea of Japan. A particle tracking model, where surface ocean currents were given by a combination of a reanalysis ocean current product and Stokes drift computed separately by a wave model, simulated particle movement. The model results corresponded with the field survey. Modeled results indicated the micro- and mesoplastics are moved northeastward by the Tsushima Current. Subsequently, Stokes drift selectively moves mesoplastics during winter toward the Japanese coast, resulting in increased contributions of mesoplastics south of 39°N. Additionally, Stokes drift also transports micro- and mesoplastics out to the sea area south of the subpolar front where the northeastward Tsushima Current carries them into the open ocean via the Tsugaru and Soya straits. Average transit time of modeled particles in the Sea of Japan is drastically reduced when including Stokes drift in the model.


Subject(s)
Plastics , Wind , Environmental Monitoring , Japan , Oceans and Seas , Water Movements
19.
Mar Pollut Bull ; 114(1): 623-626, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27686822

ABSTRACT

A field survey to collect microplastics with sizes <5mm was conducted in the Southern Ocean in 2016. We performed five net-tows and collected 44 pieces of plastic. Total particle counts of the entire water column, which is free of vertical mixing, were computed using the surface concentration (particle count per unit seawater volume) of microplastics, wind speed, and significant wave height during the observation period. Total particle counts at two stations near Antarctica were estimated to be in the order of 100,000pieceskm-2.


Subject(s)
Environmental Monitoring/methods , Plastics/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Antarctic Regions , Oceans and Seas , Wind
20.
Mar Pollut Bull ; 110(1): 432-437, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27297592

ABSTRACT

To compare the quantity of microbeads with the quantity of pelagic microplastics potentially degraded in the marine environment, samples were collected in coastal waters of Japan using neuston nets. Pelagic spherical microbeads were collected in the size range below 0.8mm at 9 of the 26 stations surveyed. The number of pelagic microbeads smaller than 0.8mm accounted for 9.7% of all microplastics collected at these 9 stations. This relatively large percentage results from a decrease in the abundance of microplastics smaller than 0.8mm in the upper ocean, as well as the regular loading of new microbeads from land areas, in this size range. In general, microbeads in personal care and cosmetic products are not always spherical, but rather are often a variety of irregular shapes. It is thus likely that this percentage is a conservative estimate, because of the irregular shapes of the remaining pelagic microbeads.


Subject(s)
Environmental Monitoring/methods , Plastics/analysis , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Cosmetics , Japan , Microspheres , Plastics/metabolism , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...